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Abstract. Dynamic Magnetic Resonance Imaging (MRI) of the vocal
tract has become an increasingly adopted imaging modality for speech
motor studies. Beyond image signals, systematic data loss, noise pollu-
tion, and audio file corruption can occur due to the unpredictability
of the MRI acquisition environment. In such cases, generating audio
from images is critical for data recovery in both clinical and research
applications. However, this remains challenging due to hardware con-
straints, acoustic interference, and data corruption. Existing solutions,
such as denoising and multi-stage synthesis methods, face limitations
in audio fidelity and generalizability. To address these challenges, we
propose a Knowledge Enhanced Conditional Variational Autoencoder
(KE-CVAE), a novel two-step "knowledge enhancement + variational
inference" framework for generating speech audio signals from cine dy-
namic MRI sequences. This approach introduces two key innovations:
(1) integration of unlabeled MRI data for knowledge enhancement, and
(2) a variational inference architecture to improve generative modeling
capacity. To the best of our knowledge, this is one of the first attempts at
synthesizing speech audio directly from dynamic MRI video sequences.
The proposed method was trained and evaluated on an open-source dy-
namic vocal tract MRI dataset recorded during speech. Experimental
results demonstrate its effectiveness in generating natural speech wave-
forms while addressing MRI-specific acoustic challenges, outperforming
conventional deep learning-based synthesis approaches. 5
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1 Introduction

Capturing real-time deformations of the vocal tract during human speech through
medical imaging is essential for various speech research applications [29,17], as
accurately characterizing the functional behavior of vocal articulators has mul-
tiple clinical implications. Several imaging modalities are currently used for this
task, including electromagnetic articulography (EMA), ultrasound, and mag-
netic resonance imaging (MRI). However, EMA requires attaching multiple sen-
sors to the articulators, which can potentially disrupt natural speech patterns,
and it can only track a limited number of points on the tongue’s surface [25].
Although ultrasound is non-invasive, it has a restricted field of view and strug-
gles to clearly visualize deeper structures such as the palate and pharyngeal
walls [21]. In contrast, MRI offers a more effective solution by providing high-
contrast anatomical imaging with high resolution while remaining non-invasive.
Advances in MRI technology have led to the development of high-speed dynamic
cine imaging, enabling rapid and real-time imaging for in vivo speech [16,9].

However, simultaneously recording the subjects’ speech audio signals during
image acquisition remains challenging due to several factors. (1) Hardware con-
straints require specialized MRI-compatible microphones that function within
strong magnetic fields without interference from the MRI scanner or to the im-
age quality [8]. (2) Acoustic interference from MRI scanners (the loud pulse
sequence sounds) generates substantial and unpredictable noise, varying with
scanning protocols/parameters and making it difficult to capture clean record-
ings of human voice [2]. (3) Data integrity issues arise as the process of dynamic
MRI reconstruction can affect sound recordings, with synchronization difficul-
ties, MRI-induced noise, missing data or artifacts leading to corrupted or incom-
plete audio segments [23]. Despite these challenges, capturing speech waveforms
remains a critical requirement in many speech imaging studies [18,30].

Multiple solutions have been proposed to obtain high-quality speech sound
files in MRI environments. Denoising techniques enhance audio clarity but can
only reduce noise rather than fully eliminate it and cannot reconstruct missing
speech segments [7,10]. More recently, an innovative approach has emerged that
synthesizes speech directly from MRI data. Liu et al. [18] developed a system
that converts 4D tagged-MRI data into audio using Non-negative Matrix Factor-
ization (NMF). While effective for processing short phrases, this method relies
on a precomputed sequence of deformation fields to synthesize audio, limiting its
ability to directly process dynamic cine images. Additionally, its multi-step pro-
cess is computationally intensive and may not generalize well to longer or more
varied speech patterns. Although these methods represent significant progress,
they still fall short of producing fully accurate and complete speech sound files
for comprehensive research applications.

In non-medical imaging settings, several methods have been proposed for
audio generation [12,15] that utilize an end-to-end variational inference frame-
work, producing more natural-sounding signals than earlier two-stage models.
Inspired by these approaches, we propose a Knowledge Enhanced Conditional
Variational Autoencoder (KE-CVAE) with two key innovations: (1) A novel two-
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Fig. 1: Illustration of our KE-CVAE model. The dashed lines in the figure rep-
resent the inference process.

step “knowledge enhancement + variational inference” framework for speech au-
dio generation from dynamic MRI sequences. Specifically, we have compiled a
collection of thirteen public head and neck MRI image/video datasets for the
training process using a self-supervised knowledge enhancement strategy. (2)
Adoption of a variational inference framework to enhance the expressive power
of generative modeling (Figure 1). We conducted comprehensive experiments to
generate speech sound using the open-access speech dynamic MRI dataset de-
scribed in [16], demonstrating the effectiveness of KE-CVAE over conventional
CNN and transformers in multiple metrics such as correlation, PESQ, and a
subjective MOS score (detailed in the results section).

2 Methods

2.1 Knowledge Enhancement with Domain-Specific Data

Recent advances in self-supervised pre-training on images [4,24] in computer
vision have demonstrated that it is possible to learn robust and meaningful
low-dimensional features without explicitly labeled supervision. Inspired by this
concept, we propose a self-supervised knowledge enhancement strategy to learn
latent variables from large-scale MRI data. Specifically, our model comprises a
teacher network and a student network (Figure 1), both based on vision trans-
formers (ViTs) [19], denoted as Fteacher and Fstudent, respectively. By leverag-
ing a large-scale curated set of vocal tract MRI, our strategy enables the visual
extractor to focus on articulatory-relevant regions and capture subtle distinc-
tions in vocal tract configurations during speech production. To effectively learn
domain-specific knowledge without annotations, we introduce three complemen-
tary loss functions: consistency loss for representation alignment, reconstruction
loss for masked image modeling, and KoLeo regularization for feature distribu-
tion optimization.
Consistency Loss. The consistency loss is designed to maximize the align-
ment of the output classification ([CLS]) token embeddings between Fteacher
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and Fstudent, facilitating better representation learning. Specifically, we pass the
[CLS] token through a standard multilayer perceptron (MLP) model to gener-
ate a vector of scores, followed by a softmax function to obtain the pseudo-class
probability p. We compute consistency loss at both the global and local levels,
corresponding to image-level and patch-level augmentations, respectively. The
global consistency loss is defined as the cross-entropy loss between the teacher
output pt and the student output ps. The local consistency loss is computed as
the cross-entropy loss between the [CLS] embeddings of both networks, psl and
ptl. We apply Sinkhorn-Knopp centering [3] to the teacher network output to
enhance distribution alignment. The final consistency loss integrates both global
and local components, formulated as follows:

Lcon = −
N∑
i=1

p
(i)
t log p(i)s −

N∑
i=1

M∑
j=1

p
(i,j)
tl log p

(i,j)
sl , (1)

where N is the batch size and M is the number of patches per sample.
Reconstruction Loss. We randomly replace the patches in the input image
with masks using the [MASK] token or random patch features with a certain
probability. The masked input MRI image Vi can be represented as Vi_mask

where the embeddings of some patches {vi}i∈B in Vi_mask are replaced by
trainable [MASK] token embeddings. The reconstruction loss is computed by
comparing the output embeddings of the [MASK] tokens from both the teacher
and student models:

Lrec = −
N∑
i=1

M∑
j=1

hj · Fteacher(Vi) logFstudent(Vi_mask), (2)

where hj = 1 indicates that the token at position j has been masked, and
hj = 0 indicates otherwise. Incorporating this reconstruction loss complements
the consistency loss, facilitating the learning of robust MRI image embeddings
at multiple levels.
KoLeo Regularization Loss. The KoLeo regularization loss [6] has been de-
signed to encourage a uniform span of the features within a batch. Given a
batch of N output [CLS] token embeddings from {Fstudent(Vi)[CLS]}Ni=1 of
the student network, KoLeo regularization loss is defined as:

LKoLeo = − 1

N

N∑
i=1

log(dN,i), (3)

where dN,i = minj ̸=i ∥Fstudent(Vi)[CLS] − Fstudent(Vj)[CLS]∥ is the minimal
distance between Fstudent(Vi)[CLS] and any other student network [CLS] em-
bedding within the batch. Fstudent(Vi)[CLS] is also ℓ2-normalized before com-
puting the KoLeo regularization loss.

2.2 Variational Inference Framework on Dynamic Speech MRI

We formulate the proposed model KE-CVAE as a conditional variational au-
toencoder. In this framework, p(y|z) represents the likelihood function for gen-
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erating an audio waveform data point y given the latent variable z, while q(z|y)
denotes the approximate posterior distribution that infers z from y. Additionally,
p(z|c) describes the prior distribution of the latent variables z, conditioned on
the MRI sequence c. The objective of the CVAE is to maximize the variational
lower bound, also known as the evidence lower bound (ELBO), of the intractable
marginal log-likelihood of the data log p(y|c). This objective can be decomposed
into two terms: the reconstruction loss and the KL divergence, expressed as
follows:

LELBO = Lrecon +KL(q(z|y) || p(z|c)). (4)

The reconstruction loss, Lrecon, is defined as Lrecon = ∥ymel − ỹmel∥1, where
ymel denotes the mel-spectrogram of the input audio, and ỹmel represents the
mel-spectrogram reconstructed by the decoder. The ∥·∥1 notation refers to the
ℓ1 norm.

The KE-CVAE model primarily comprises three components: a posterior
encoder, a prior encoder, and a decoder. We detail the three modules as follows:
Posterior Encoder. The posterior encoder extracts the latent representation
z ∼ q(z|y) from the input waveform y. We first transform the raw waveform into
its linear spectrum. Several non-causal WaveNet residual blocks [11] are applied
to extract an embedding sequence. Then we employ a linear layer to project the
mean and variance from the normal posterior distribution p(z|y).
Prior Encoder. In our proposed setting, dynamic MRI sequences serve as the
condition for speech generation. The prior encoder models the conditional prior
distribution p(z|c) given the MRI sequence c. As described in Section 2.1, the
pre-trained MRI visual extractor Fteacher is applied in this module to obtain the
hidden representation hMRI . The linear projection layer following the blocks
produces the mean µ and variance σ of the normal posterior distribution. To
further improve the scalability of the approximated posterior distributions, we
use a normalizing flow fθ to apply a sequence of invertible transformations [28].
Therefore, the KL divergence is calculated by:

KL(q(z|y) || p(z|c)) = log q(z|y)− log p(z|c),

p(z|c) = N (fθ(z);µ(c), σ(c))

∣∣∣∣det ∂fθ(z)∂z

∣∣∣∣ . (5)

Decoder. The decoder uses the latent variable z to reconstruct the waveform
ỹ ∼ p(y|z). In addition, we adopt the adversarial training strategy. The discrim-
inator D follows HiFi-GAN’s multi-period discriminator (MPD) and multi-scale
discriminator (MSD) architecture [13]. Specifically, the adversarial losses [22] for
the generator G and the discriminator D are defined as:

Ladv(D) = E(y,z)

[
(D(y)− 1)2 + (D(G(z)))2

]
, (6)

Ladv(G) = Ez

[
(D(G(z))− 1)2

]
. (7)

Specifically, we utilize the feature matching loss [14] as an element-wise recon-
struction loss for more stable training procedure.
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3 Experiments and Results

3.1 Datasets and Evaluation Metrics

LaSVoM Dataset. To address the scarcity of large-scale head and neck MRI re-
sources, we constructed a “large-scale vocal track MRI” data collection (LaSVoM)
by aggregating and curating data from thirteen public MRI image and video
datasets in the head and neck region6. Through systematic frame extraction
and resizing, we collected over 30,000 high-quality mid-sagittal head and neck
MRI images, each resized to focus on the vocal tract region with a size of 84×84
pixels. These images encompass a wide range of phonetic contexts, speakers,
and articulation patterns, providing a comprehensive resource for the proposed
knowledge enhancement process.
Variational Inference Dataset. We utilized the open dynamic MRI in speech
dataset in [16], which consists of cine MRI capturing dynamic vocal tract move-
ments in the sagittal plane, accompanied by synchronized audio recordings. The
dataset includes cine sequences from 75 participants performing various speech
tasks. For training and testing, we split the dataset into an 8:2 ratio.
Evaluation Metrics. We calculated conventional objective metrics for audio
waveform evaluation, including 2D Pearson’s correlation coefficient (Corr2D) [5]
and perceptual evaluation of speech quality (PESQ) [27]. We also performed a
subjective MOS (mean opinion score) test to evaluate all compared methods.
Specifically, we randomly selected 30 from 1662 test audios for subjective lis-
tening and asked 10 human raters to assess their quality. The raters evaluated
the audio quality by comparing each reconstructed audio sample with its cor-
responding ground truth, rating them on a scale from 1 to 5 based on their
similarity and overall quality.

3.2 Implementation and Training Protocols

Due to significant imaging differences across scanner platforms, we normalized
each image in the LaSVoM dataset to a mean of 0.5 and a standard deviation
of 0.5. For both the training and test datasets, we applied a noise reduction
algorithm7 to remove background noise from the audio, followed by audio mag-
nitude normalization. Since the dataset contained a substantial number of silent
segments (audio volume below -60 dB for more than 0.2 seconds), we used FFm-
peg8 to detect and segment audio sequences, retaining only the voiced segments.
Finally, we resampled the audio to 16,000 Hz and the video to 80 fps.

In the proposed model, The MRI visual extractor was composed of 12 ViTs
blocks. The dimension of the WaveNet was 512. The decoder and discriminator
version of the HiFi-GAN we used was V1. The networks were trained using the
AdamW optimizer [20] with β1 = 0.8, β2 = 0.99 and weight decay λ = 0.01.
We implemented our approach using the Pytorch toolbox and trained for a total
6 https://github.com/xxxxx. Anonymized GitHub page for review purposes.
7 https://github.com/timsainb/noisereduce
8 https://github.com/FFmpeg/FFmpeg

https://github.com/xxxxx.
https://github.com/timsainb/noisereduce
https://github.com/FFmpeg/FFmpeg
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Table 1: Quantitative evaluation results of the audio quality using different syn-
thesis methods on various metrics

Method #Param Corr2D ↑ PESQ ↑ MOS ↑
Vanilla (CNN) w/ KE 124.0 M 0.672 1.135 3.48 (±0.14)
Vanilla (CNN) 124.0 M 0.641 1.116 3.16 (±0.09)
Vanilla (Transformer) w/ KE 146.5 M 0.688 1.140 3.57 (±0.15)
Vanilla (Transformer) 146.5 M 0.649 1.131 3.22 (±0.12)
Ours 121.1 M 0.818 1.251 4.13 (±0.08)
Ours w/o adversarial training 60.0 M 0.759 1.190 3.80 (±0.13)
Ours w/o Flow 120.6 M 0.798 1.237 4.02 (±0.10)

Table 2: Ablation study in our knowledge enhancement strategy
Method Corr2D ↑ PESQ ↑ MOS ↑
Baseline 0.716 1.152 3.74 (± 0.12)
+Lcon 0.758 1.170 3.88 (± 0.14)
+Lcon + Lrec 0.802 1.226 4.06 (± 0.10)
+Lcon + Lrec + LKoleo 0.818 1.251 4.13 (± 0.08)

of 48 hours on an NVIDIA Tesla A100 GPU, where 40 epochs were used for
the knowledge enhancement stage and 100 epochs were used for the variational
inference stage.

3.3 Benchmarking

Quantitative Analysis. To validate the effectiveness of the proposed KE-
CVAE framework, we compared it against two vanilla network variants following
[1,26]. Specifically, we replaced the variational inference step with conventional
CNN and transformer architectures with a similar number of parameters for the
same speech audio generation task. In these vanilla variants, we directly used the
MRI sequences as input and passed them through a series of encoders to obtain
the audio output. Both vanilla models were optimized using the reconstruction
loss Lrecon as defined in our method. From Table 1, it is prominent that the
performances of both architectures are evidently lower than that of KE-CVAE.
Notably, our knowledge enhancement step (KE in Table 1) also proves to be
beneficial for the two vanilla methods, demonstrating its general applicability
and effectiveness.

We further conducted an ablation study to assess the contributions of differ-
ent components in the KE-CVAE framework. Results in Table 1 indicate that
removing adversarial training and Flow mechanisms leads to a noticeable per-
formance drop, highlighting the critical role of either component in achieving
optimal performance. Meanwhile, every component in Section 2.1 plays an im-
portant role in the whole framework. To evaluate the impact of each objective
function, we performed additional ablation studies and presented the results in
Table 2, where we used the CVAE model without knowledge enhancement as
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baseline. Results show that all the proposed loss functions in Section 2.1 are
essential in improving the final performance.
Qualitative Analysis. Moreover, we visualized the spectrograms of the gen-
erated audio clips from the test stage, with one example shown in Figure 2. As
can be seen, the generated spectrogram and its corresponding audio waveform
from KE-CVAE exhibit superior alignment with the ground truth. In contrast,
the CVAE framework without the knowledge enhancement step (w/o KE in Fig-
ure 2) and the vanilla transformer model’s quality are visually lower than that
of the proposed full KE-CVAE9.

Fig. 2: An example of generated audio spectrograms and waveforms using differ-
ent methods compared to the ground truth.

4 Conclusion

In this work, we developed a novel two-step “knowledge enhancement + vari-
ational inference” framework to synthesize high-quality speech waveforms from
dynamic MRI sequences, addressing critical challenges in synchronizing speech
audio with real-time MRI recordings. In the knowledge enhancement phase, we
proposed a robust self-supervised training pipeline that leverages large-scale MRI
data to learn domain-specific features without explicit annotations. Following
this, we integrated a variational inference framework to enhance the model’s
expressiveness. Specifically, we employed a posterior encoder, a prior encoder,
and a decoder to effectively map latent variables to speech waveforms, further
augmenting them with normalizing flow and adversarial training to improve the
overall training process. Experimental results have demonstrated the efficacy of
KE-CVAE in generating high-quality, temporally accurate speech from dynamic
MRI data. This method has the potential to significantly enhance the accuracy
of speech analysis in both clinical and research settings.
9 More generated example audio waveforms along with their ground truths can be

found in the supplementary material.
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